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Abstract. Fermi’s ‘golden rule’ expressions refer to first- and second-order time-dependent 
perturbation theory results for transition probability rates involving designated final states 
which are members of a continuum. By use of a Laplace-average formalism, it is shown that 
the long-term time-averaged total transition probability rate involving designated initial 
and final states which are all members of a continuum is exactly the sum of the pertinent 
‘golden rule’ expressions. Generalization to higher-order perturbation theory results is 
suggested. 

1. Introduction 

Lacking practical solutions to the time-dependent Schrodinger equation which are also 
exact, one is almost always obliged to deal with the time-dependent properties of real 
systems in theoretical terms that are approximate. Usage of the relevant approxima- 
tions in such cases is surely enhanced when they serve as well to put bounds of some sort 
on the exact quantities to which they pertain, and the peak of such enhancement is 
undoubtedly attained when the bounds further serve to establish conditions for which 
an ostensibly practical approximation does become exact. Indeed, as established in the 
present paper, this is precisely the situation pertaining to time-dependent total transition 
probabilities and their rates and the expressions that are constructed for these quantities 
from related time -dependentperturbative approximations (Dirac 1958) which have been 
dubbed ‘golden rules’ by Fermi (Orear et a1 1950). 

A preliminary section shows how certain iterative approximants to the Laplace- 
averaged statistical operator can be obtained from the equation that determines it, 
expressed in terms of a suitable representation-diagonal Laplace-averaged statistical 
operator and a related Feshbach perturbation Hamiltonian of the system (Feshbach 
1958,1962). Some upper and lower bounds for quantities that are closely related to the 
Laplace-averaged total transition probabilities and their rates (Golden 1976) are 
obtained in such terms in the following section. The necessary and sufficient conditions 
for the bounds to become equal are examined in the next section, the sufficiency then 
being shown to follow when the perturbation Hamiltonian has a square of which the 
trace becomes vanishingly small as the basis of representation used approaches a 
continuum. Under these circumstances, it is shown that the long-term time-averaged 
total transition probability rate becomes rigorously equal to the sum of the pertinent 
‘golden rule’ expressions of Fermi. This constitutes the principal result of the present 
paper, and how it may be extended is conjectured. 
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2. Preliminaries 

We begin by supposing that the system of interest here is initially characterized by a 
statistical operator which is a projection, namely, 

n: = n o  = (2.1) 
and, in representative form, may be expressed as 

n o  = I40)(40l, 
so that (assuming that all traces to be considered exist) 

Tr no = (401~o) = 1. 

P W  = e  

(2.3) 

(2.4) 

At any subsequent time, we suppose that the statistical operator is 
-ifH/fifloe+itH/h 

so that it satisfies (von Neumann 1955) 

where H i s  the (time-independent) Hamiltonian of the system. (With no undue loss of 
generality, we suppose the eigenvalue spectrum of the latter to be a purely discrete one, 
bounded from below and free from any limit points. In view of our ultimate interest in 
continuous eigenvalue spectra, we shall later allow the eigenvalue spectrum to become 
essentially dense.) 

It turns out to be useful-especially with regard to long-term behaviour-to work 
with the Laplace-averaged statistical operator (Golden 1976). It is defined as 

(Unless specified otherwise, 5 is assumed to be real.) Our immediate main interest will 
centre on working with certain tractable approximate solutions to equation (2.7). 

M to be 
specified later, from which we construct the orthogonal projections 

For this purpose, we begin with a suitably chosen orthonormal set 

n n  E l#n)(4nl, (2.9) 
which are each of trace unity, and their union 

M 
P M =  n". (2.10) 

n =O 

We suppose that the original set can be augmented to form a complete orthonormal set 
{14n)}oo 3 (l4J)M, from eigenfunctions of 

(2.11) 
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where I is the identity operator. In terms of such a complete set, we construct 
m 00 

H d  E 1 flflHfln E 1 flflHnn, (2.12) 
n =O n 4  

by means of which the original Hamiltonian is evidently expressible as 

H = Hd -k (H- H d )  (2.13) 

in terms of which the perturbation Hamiltonian is 

and is a generalization of the one originally introduced by Feshbach for dealing with 
scattering problems (Feshbach 1958, 1962). 

Similar to equation (2.12), we next introduce 
m 

n =O 
Rd(5)' ? r n R ( r ) W n  (2.15) 

and, after some straightforward manipulations, render equation (2.7) into 

ihl(R(5) -Rd(l)) 

= [Hd, R(t )  -Rd(l)l+ [ H -  Hd, Rd(l)] 

(2.16) 

(2.17) 

(2.18) 

m=O n=O 

which displays the iterative approximant nature of the {ANR(L)} in relation to (R(5) - 

In terms of the foregoing quantities, the total transition probability of the system is 
Rd(5)). 

T(t)  = 1 -Trp(t)no, (2.20) 

with an associated total transition probability rate of 

W) 
at 

?(t)= -Tr-no. (2.21) 
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These quantities have the related Laplace-averaged quantities 

and 
p([)  = 1 -Tr R(l)no 

fcs, = sm. 

Rl) = Tr (Nl)  - no)’ 

In alternative forms, we also have from equations (2.3) and (2.7) 

and from equation (2.15) 

p(6) = Tr(R(l) -Rd(l>>2+Tr(Rd(C)-n~)2. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

3. Some basic inequalities 

We readily obtain from equation (2.7) that 

Tr(R(l)-no)’ = -Tr no[& R(l)]/ihl = -Tr lso[H-Hd, R(l)-no]/ihl  

C 4 Tr{H-Hd}2/hZ[2, (3.1) 
where we have made use of the well known Cauchy-Schwarz inequality. 

From equations (2.24) and (2.25) we then obtain 

(3.4) 

leaving the 5 dependence of the latter quantities implicit. Then it .Alows from equation 
(2.19) that 

(4m IR(l) -Rd(l) - AN+IR(l)k$n) 

As a result, we have that 

W A N +  1R (1))’ 

By expanding the right-hand side of this equation, invoking the well known triangle 
inequality and re-arranging, we can obtain 

(3.7) 



Total transition rates and Fermi’s ‘golden rules’ 363 

x [Tr(R (5) -Rd(&?)21-’. 

From equation (3.5) we are able to obtain 

(3.8) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The inequalities of equations (3.2), (3.7), and (3.13) are the basic ones we need for 
our later purposes. 

4. Laplace-averaged total transition probability theorems 

It is clear from equation (3.7) that 

Tr(R(l) -RAW = 
TdAN+ lR(l>)’ 

if and only if 

x;= 0. 

(4.1) 

(4.2) 

However, to suppose that either of these conditions will be rigorously satisfied for some 
complete orthonormal basis {14,>}a which does not consist of eigenfunctions of the 
Hamiltonian would seem incorrect. It is correct, nevertheless, for a broad class of 
physically relevant bases, a matter we shall establish here. 
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For this purpose, we take advantage of equation (3.13) and, upon using equation 
(2.14), proceed to examine 

After further manipulations, re-arrangements and making use of equation (2. lo), we 
get 

Tr(H- Hd)’ = 2 1 (Tr nnH2 -Tr n,,Hn,,Hn,) - 1 Tr nnH(PM - n n ) H n n .  (4.4) 

Because the last series is evidently positive, we obtain 

M M 

n =O n = O  

(4.5) 

where use has been made of equation (3.3). We note that the quantities to be 
evaluated in the right-hand side of equation (4.5) involve only the originally chosen 

Each term of equation (4.5) can be recognized as the uncertainty in the energy to be 
associated with the relevant state that is to be identified with a member of the { l + n ) } M  
basis. When each of the latter is taken in a well defined limiting sense to be described 
presently, pertinent to the description of scattering processes, to comprise a member of 
a continuum, the associated energy uncertainty becomes arbitrarily small (Jordan 
1962). With such a choice of the individual I&), we may also stipulate that M may 
increase without limit in such a way that 

{Idn))M basis. 

as 

(4nI(H-En)*I4n) + 0, all O s n s M .  (4.7) 
The limiting process implicit in equations (4.6) and (4.7) is the following. The 

original basis is presumed to consist of non-localized functions which are 
nevertheless confined to large finite regions of configuration space; the limiting process 
here involved is one that extends these regions indefinitely (for a more detailed 
example, see Golden 1976). At every finite stage of the extension, each 16) remains 
normalized to unity; at every finite stage of the extension, M is finite but with a value 
that does not decrease with increasing extension. When M does become indefinitely 
large, it is not required that limM+,03 constitute a complete orthonormal basis. In 
spite of the fact that the several I&) are not eigenfunctions of H, the condition 
expressed by equation (4.7) implies the existence of energy eigenfunctions with energy 
eigenvalues which are arbitrarily close in value to the corresponding E, (Temple 1928, 
Weinstein 1932a, b, Kat0 1949). 

Under the circumstances described, equation (4.5) enables the conditions expressed 
by equations (4.6) and (4.7) to be compactly summarized by 

Tr(H-Hd)’+O, HZ Hd. (4.8) 

xL+ 0, NaO, (4.9) 

Now, from equation (3.13), 
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so that, by equation (3.7), 

(4.10) 

Equations (4.8)-(4.10) comprise a primary version of the fundamental theorem of this 
paper. 

However, some additional results are obtainable from equation (3.2). When equa- 
tion (4.8) holds we must also have 

Tr m&(l)-TrR&)+l-Trma([)+O, (4.11) 

where used has been made of equations (2.7) and (2.24). As a result, we obtain that 

Tr m&([) + 1. (4.12) 

The consequence of equations (4.10) and (4.11) is that 

(4.13) 

enabling any of the approximants to serve in giving an exact expression for the 
Laplace-averaged total transition probability. The essence of equation (4.1 1) is that 

R,  + &O, all !A (4.14) 

which enables an important simplification to be made later of the {A*(<)} matrix 
elements and facilitates their evaluation. (In scattering processes characterized by a 
finite cross section, the equivalent of equation (4.14) is well known (Heitler 1953).) 
Equations (4.8), (4.13) and (4.14) comprise a secondary version of the fundamental 
theorem of this paper. 

4.1. Fermi’s ‘golden rule’ theorems 
In order to exploit equation (4.13), we must provide a calculable expression for 
{AJ?(L)}. For purposes of being explicit, we proceed to obtain matrix elements for 
All?([) and A2R([), obtainable from equations (2.17) and (2.18) and under conditions 
corresponding to equations (4.8) and (4.14). After some manipulation, we find that 

After somewhat more manipulations, we find that (maintaining a discrete basis formal- 
ism despite the continuum implicit in the condition of equation (4.8)) 

(4, JA2R(t)lA) 
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Instead of working directly with equation (4.13), we make use of equations (2.23) 
and (2.24) to obtain 

Upon setting N =  1 and substituting equation (4.15), we get 

(4.17) 

(4.18) 

We now modify the formal expressions to more readily accommodate any continuum. 
For this purpose, we represent the sum in equation (4.18) as a Stieltjes integral, namely, 

(4.19) 

where nE is the number of distinct eigenvalues of HM not exceedingE and k is a discrete 
label identifying a degenerate eigenstate of HM. Now, when nE is adequately rep- 
resented by a continuous function of E, we may write 

where 

PE dnE/dE. 

(4.20) 

(4.21) 

Finally, we suppose that 4' + 0 + , thereby giving emphasis to the long-term time- 
averaged properties under examination. As a result of the Cauchy singular integral 
relation (Titchmarsh 1948) we may take 

the Dirac S function, so that we obtain 

(4.22) 

(4.23) 

The numerator is recognizable as the first-order time-dependent perturbation theory 
result (Dirac 1958). The individual terms are the 'golden rule number 2' expressions of 
Fermi (Orear et a1 1950). The importance of the theorem expressed by equation (4.23) 
is that the 'golden rule' expressions sum exactly to yield the long-term time-averaged 
total transition probability rate. 
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(4.24) 

where the last term has made use of equation (2.23). Under the conditions expressed by 
equation (4.8), this term vanishes as we now show. Since 

4h2f2 + (E, - Em)2 

we can see that, after some straightforward manipulation, 

l ( d m  IH-Hdl+O)1’1(4n IH-Hdl’$O)1’[4h2J2 + 6% 
)( F(l))-l 

(4.25) 

In view of equations (4.11) and (4.18) the last term of the left-hand side of equation 
(4.24) vanishes, as asserted. 

It is now possible to carry out the same kind of analysis that led to equation (4.23). 
We omit the details in the interest of brevity, however. The result is that we can 
ultimately obtain 

(4.27) 

Again, the numerator is recognizable: apart from minor differences in notation, it 
corresponds to the second-order time-dependent perturbation theory result (Dirac 
1958). The individual terms correspond to Fermi’s ‘golden rule number 1’ expression 
when the first-order result vanishes (Orear eta1 1950). As previously, the importance of 
the theorem expressed by equation (4.27) is the ‘golden rule’ expressions sum exactly to 
yield the long-term time-averaged total transition probability rate. 

We note that, apart from the conditions implicit in and derivable from equation 
(4.8), the {lq5n)}M basis and the {Iq5fl)}co basis are arbitrary. 

4.2. Extended ‘golden rule’ expressions 

An essential point to be made regarding the theorems of equations (4.23) and (4.27) is 
that they establish that perturbation theory approximations to first and second orders 
each sum to the same exact quantity. From equation (4.13), which is basic to the results 
obtained here, it is apparent that many more expressions that are equal to the exact 
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f(O+) can be forthcoming. The only question that remains is whether the limiting 
expressions for A a ( l ) ,  N > 2 ,  will correspond precisely to the related order of 
time-dependent perturbation theory. 

From the results obtained for N = 1,2 ,  we may reasonably anticipate that the same 
will be the case for N > 2. In such a case, we would have the following extended ‘golden 
rule’ theorem: the perturbation theory approximation to any (finite) order for long-term 
transition probability rates sum to give the related exact total quantity, under the 
conditions summarized by equations (4.8)-(4.14). Until actually demonstrated how- 
ever, this anticipation must remain a conjecture to be considered at some future time. 

5. Conclusions and comments 

The time-dependent perturbation theory results for transition probability rates known 
as Fermi’s ‘golden rule’ expressions are shown here to sum to the exact long-term 
time-averaged total transition probability rate. This result obtains whenever the basis 
of representation used to describe the system of interest involves an attainable 
continuum in terms of which the related Feshbach perturbation Hamiltonian (Feshbach 
1958, 1962) has a square the trace of which becomes vanishingly small. The extension 
of the ‘golden rule’ expressions to all orders of perturbation theory results is conjec- 
tured. 

A significant matter in the analysis which has been used here is the process formally 
introduced first in equations (4.6) and (4.7) and extended later throughout the preced- 
ing section. As such, it imposes a limiting continuum character upon the basis of 
description that is accorded the system prior to examining the long-term behaviour of 
the latter. In technical terms, the continuum is imposed at each value of 5, following 
which the limiting values of the expressions as 5 + 0 + is obtained. It is well known 
(Golden and Longuet-Higgins 1960) that the limit so obtained does depend upon the 
order in which the limiting processes are applied. 

For this reason, no analogue of the ‘golden rule’ expressions is to be anticipated for 
systems which overwhelmingly involve states that are purely discrete, e.g., those bases 
in which the designated initial state is so maintained. It is relatively simple to show, but 
we shall omit doing so, that the total transition probability rate then becomes vanish- 
ingly small as 5 + 0 + in all such cases. Furthermore, a major feature of the ‘golden rule’ 
expressions is their emphasis of those transitions which occur between designated states 
of essentially the same energy. Since non-continuum states of large uncertainty in their 
energy are readily imaginable, energy conservation in such cases then is to be expected 
only in an average sense and some transitions are expected to be between designated 
states that differ appreciably in their energy. For such circumstances, the inequalities 
which have been obtained may be applicable even though the equalities are not. 
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